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Global

Challenges
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https://www.stockholmresilience.org/research/planetary-boundaries.html

https://www.stockholmresilience.org/research/planetary-boundaries.html
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Global warming
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Summary for Policymakers IPCC AR6 WGI 2021
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Denmark as a case
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Danish electricity production

25-10-2021 6

Energy in Denmark, DEA, 2019 
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GHG challenges in DK
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2030 goal

From Klimastatus og -fremskrivning, DEA, 2021 
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Smart energy systems and sector coupling

Power to other sectors

• Direct and indirect electrification

Others to power sector

• Flexibility and storage

8

UK Summary of DTU Sector Development report about Smart Energy Systems. July 2020

https://www.dtu.dk/-/media/DTUdk/Samarbejde/Virksomheder-og-erhverv/sektorudvikling/Smarte_Energisystemer/2020-06-19-DTU-Sector-Development-Project-about-Smart-Energy-Systems-UK-Summary-of-report.ashx?la=da&hash=B2F6CD42E92C55B9B0464979FF4FCDA6AEE9B59B
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Defining Sector Coupling

Two types of sector coupling:

• “End-use sector coupling involves the electrification of energy demand while reinforcing 

the interaction between electricity supply and end-use.”

• “Cross-vector coupling involves the integrated use of different energy infrastructures 

and vectors, in particular electricity, heat and gas, either on the supply side, e.g. through 

conversion of (surplus) electricity to hydrogen, or at the demand side, e.g. by using 

residual heat from power generation or industrial processes for district heating.”

(DG for Internal Policies, European Parliament, Nov. 2018)

Alternative terms (UK, EERA-European Energy Research Alliance):

„Energy Vector Coupling“ or „Energy Systems Integration“
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Different ways of Sector Coupling

Source: IEA, 2019
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Potential electricity demand increases
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(A Clean Planet for all -A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy” EU Commission, Nov 2018)
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Research needs
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UK Summary of DTU Sector Development report about Smart Energy Systems. July 2020

https://www.dtu.dk/-/media/DTUdk/Samarbejde/Virksomheder-og-erhverv/sektorudvikling/Smarte_Energisystemer/2020-06-19-DTU-Sector-Development-Project-about-Smart-Energy-Systems-UK-Summary-of-report.ashx?la=da&hash=B2F6CD42E92C55B9B0464979FF4FCDA6AEE9B59B
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Modelling sector coupled systems

Plant level system optimisation

• All other is equal

• Operating hours and e.g. average electricity and heat prices

• More details - e.g. on internal heat optimisation

• LCOE (no system costs or competition) - and local emissions

Large-scale energy system optimisation

• Integrating variable renewable energy production (wind and solar)

• Assessing competition between technologies and synergies (generation, storage, 

transmission, flexible demand)

• Location of renewable energy sources and energy infrastructure

• International energy markets (power, gas, fuels)

• Impact on energy prices and operating hours (all other is not equal) 

• System costs, electricity and DH prices - and system emissions

13
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Balmorel

Output
Energy conversion
Fuel/ electricity consumption
Electricity import/export
Emissions
Investments in plants
and transmission lines (el/DH)
Prices on traded energy
Total costs

Input
Heat and electricity demand
Fuel prices and emissions
Efficiencies and costs
Hourly distribution of demands
and production from RE sources       
Capacities of existing plants and transmission     
Time aggregation 

Modes
LP or MIP 
(e.g. economy of scale)
Myopic investments or
Rolling horizon

Assumptions
Economic rationality
Perfect markets
Perfect foresight within a year

J. Gea-Bermúdez et al., The role of sector coupling in the green transition

https://www.techrxiv.org/articles/preprint/The_role_of_sector_coupling_in_the_green_transition_A_least-cost_energy_system_development_in_North_Europe_towards_2050/12933071/1

https://www.techrxiv.org/articles/preprint/The_role_of_sector_coupling_in_the_green_transition_A_least-cost_energy_system_development_in_North_Europe_towards_2050/12933071/1
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The mathematical formulation of the objective function is represented as a minimizing problem for the simulated year:

𝑚𝑖𝑛. 𝒱𝑜𝑏𝑗 = ෍

𝒞,ℛ,𝒜,𝒢,𝒯

𝐶𝒜,𝒢,𝒯
𝑓𝑢𝑒𝑙

+ 𝐶𝒜,𝒢,𝒯
𝑂&𝑀 + 𝐶𝒜,ℛ,𝒢,𝒯

𝑖𝑛𝑣 + 𝐶ℛ,𝒯
𝑡𝑟𝑎𝑛𝑠 + 𝑇𝒞,ℛ,𝒜,𝒢,𝒯

𝑓𝑢𝑒𝑙
+ 𝑇𝒞,𝒢,𝒯

𝑒𝑚𝑠 + 𝑇𝒜,𝒢,𝒯
𝑜𝑡ℎ𝑒𝑟

𝐶𝒜,𝒢,𝒯
𝑓𝑢𝑒𝑙

represents the fuel costs for Generation technology 𝒢 in Area 𝒜 at Time 𝒯

𝐶𝒜,𝒢,𝒯
𝑂&𝑀 represents the fixed and variable operation costs related to the Generation technology 𝒢 in Area 𝒜 at Time 𝒯

𝐶𝒜,ℛ,𝒢,𝒯
𝑖𝑛𝑣 represents the investment costs in the new Generation technology 𝒢 in Area 𝒜, and transmission capacity between Regions ℛ, at Time 𝒯

𝐶ℛ,𝒯
𝑡𝑟𝑎𝑛𝑠 represents the transmission costs related to the electricity exchange between Regions ℛ at Time 𝒯

𝑇𝒞,ℛ,𝒜,𝒢,𝒯
𝑓𝑢𝑒𝑙

represents the fuel taxes for Generation technology in Country 𝒞 or in Regions ℛ or Area 𝒜 at Time 𝒯

𝑇𝒞,𝒢,𝒯
𝑒𝑚𝑠 represents the emission taxes e.g. CO2 costs, for Country 𝒞, emitted by Generation technology 𝒢 at Time 𝒯

𝑇𝒜,𝒢,𝒯
𝑜𝑡ℎ𝑒𝑟 represents other taxes which can be related to district heating and heat only Generation technologies 𝒢 in Area 𝒜 at Time 𝒯

Balmorel objective function

16
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Balmorel constraints

The objective function minimizes:

• Costs: investment costs, operation and maintenance costs, fuel costs, taxes etc.

Constraints

• Balance equations

• Capacity constraints

• Energy constraints

• Operational constraints

• Emission caps/ renewable energy targets

17
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Sector coupling - System analysis example

18
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Scenario Transmission
investments

High onshore
wind potential

P2H
investments

Decarboni-
sation of
the transport 
sector

Synthetic gas
investments

REST
(Restricted) - - + + +

TRANS
(Transmission) + - + + +

WIND
(High onshore 
potential)

- + + + +

FREE + + + + +

19
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• Sector coupling leads to higher electricity demand 

• Higher electricity demand leads to higher need for VRE installations

J. Gea-Bermúdez et al., The role of sector coupling in the green transition

https://www.techrxiv.org/articles/preprint/The_role_of_sector_coupling_in_the_green_transition_A_least-cost_energy_system_development_in_North_Europe_towards_2050/12933071/1

Electricity demand in North Europe

https://www.techrxiv.org/articles/preprint/The_role_of_sector_coupling_in_the_green_transition_A_least-cost_energy_system_development_in_North_Europe_towards_2050/12933071/1
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Electricity generation capacity in North Europe

21

J. Gea-Bermúdez et al., The role of sector coupling in the green transition

https://www.techrxiv.org/articles/preprint/The_role_of_sector_coupling_in_the_green_transition_A_least-cost_energy_system_development_in_North_Europe_towards_2050/12933071/1

• Mainly photo voltaics and wind power

• Onshore wind restrictions increase offshore wind investments

https://www.techrxiv.org/articles/preprint/The_role_of_sector_coupling_in_the_green_transition_A_least-cost_energy_system_development_in_North_Europe_towards_2050/12933071/1
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Difference in system costs (North Europe)
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The possibility to invest in P2H units leads to annual savings of around 30%
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GHG emissions w/wo sector coupling (in North Europe)
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92% 

reduction

in GHG 

energy

71% 

reduction

in GHG 

energy

Sector coupling leads to leads to around 20 percent points lower GHG emissions 
in the energy sector



DTUDate Title

Conclusions

• Sector coupling facilitates increased electricity demand, VRE integration, heat storage 

capacity, and electricity and district heating transmission expansion towards 2050

• Sector coupling can facilitate lower costs and GHG emissions - assuming perfect markets

and digitalization

• Main new electricity demands are PtH and PtX (from 2035), which can both feed into

district heating

• Onshore wind potential highly influences offshore wind development. Sector coupling has 

the potential to significantly increase offshore wind investments, and hence, the value of 

offshore grids

24



DTUDate Title 25

www.futuregas.dk

http://www.futuregas.dk/
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FutureGas

Transport

Consumption

(TIMES) 
w/wo biomass import
www.futuregas.dk

26

http://www.futuregas.dk/
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FutureGas

Transport

Consumption

(TIMES)
w international transport

w/wo biomass import
www.futuregas.dk

http://www.futuregas.dk/
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Fuel production
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Transport Fuels

Fossil Fuels Alternative Fuels

Biofuels Electrofuels

Bioethanol

Biogasoline

Biojet

Biodiesel

E-Biomethanol

E-Biogasoline

E-Biojet

Biooil

E-methanol

E-gasoline

E-jet

E-diesel

E-LPG

Ammonia
H2
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CCS vs CCU?

29

Fossil CO2 Biogen CO2

CCS

Neutral Negative

CCU Biofuel Biogen CO2

NeutralNeutralePositive
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Electrofuels analysis
Balmorel-OptiFlow Model Characteristics

32

• Investment and operation optimization

• High geographical resolution

• High temporal resolution

• Decommissioning of technologies

• Endogenous electricity prices

• Least-cost socio economic optimization

Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study Lester, M. S., Bramstoft, R. & Münster, M., 2020, In : Energy. 199, 117408.
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Detailed spatial resolution

34

Resources District heating areasTransportation of resources
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Energy Demands for Alternative Fuel Pathways

35

58 PJ

Biofuel pathway

102 PJ                                                        

Electrofuel pathway

3 Mt                                     84 PJ

[23.3 TWh]

E-biofuel pathway

52 PJ                                    43 PJ

[11.9 TWh]

94 PJ of straw 
and wood in 

Denmark

53 PJ of 
electricity 

generation from 
wind in 

Denmark in 
2018
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Fuel Production
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~12 TWh of excess heat for district heating

~20% of district heating demand in 2050 

Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study Lester, M. S., Bramstoft, R. & Münster, M., 2020, In : Energy. 199, 117408.
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PtX production is highly sensitive to biomass costs

38

Price [€/GJ]

Straw 6.8

Wood chips 7.9

Wood pellets (imported) 9.8
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Take Aways

39

Biomass availability/costs

Excess heat from PtX

Inclusion of international transport

Carbon capture (and biochar)

E-biofuels
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Conclusions

• Geography matters! Both on the ressource and energy infrastructure side

• Results indicate that domestic biomass potentials in 2050 will not be sufficient in 

creating a fossil fuel independent energy system in Denmark when taking road, sea and 

air travel into account. 

• Because of this, the use of electrofuels is crucial and aids in the balancing of the 

electricity grid and provides heat to the district heating network. 

• Fuels that utilize both hydrogen and biomass prove to be the most economically 

feasible and exploit the limited domestic biomass most optimally. 

40
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Sector coupling in EU

41

Focus on electrification

Technological overview

1. Power to heating and cooling (PtH)

2. Power to mobility (EV)

3. Power to gas/ fuels (PtX)

- Status

- Potential

- Barriers

https://www.etip-snet.eu/sector-coupling-concepts-state-art-
perspectives/

https://energypolicycast.podbean.com/e/sect

or-vector-and-smart-sector-coupling/

www.superp2g.eu

https://www.etip-snet.eu/sector-coupling-concepts-state-art-perspectives/
https://energypolicycast.podbean.com/e/sector-vector-and-smart-sector-coupling/
http://www.superp2g.eu/
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Recent related articles

The role of sector coupling in the green transition: A least-cost energy system development in Northern-

central Europe towards 2050

J Gea-Bermúdez, IG Jensen, M Münster, M Koivisto, JG Kirkerud, Y Chen, H Ravn, Applied Energy 289, 116685

Modelling of renewable gas and renewable liquid fuels in future integrated energy systems

R Bramstoft, A Pizarro-Alonso, IG Jensen, H Ravn, M Münster, Applied Energy 268, 114869

Analysis on electrofuels in future energy Systems: A 2050 case study

MS Lester, R Bramstoft, M Münster, Energy, 117408

Potential role of renewable gas in the transition of electricity and district heating systems

IG Jensen, F Wiese, R Bramstoft, M Münster, Energy Strategy Reviews 27, 100446

Pathways to climate-neutral shipping: A Danish case study

T ben Brahim, F Wiese, M Münster, Energy 188, 116009

Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning

A Pizarro-Alonso, H Ravn, M Münster, Applied Energy 253, 113528

Impact and effectiveness of transport policy measures for a renewable-based energy system

G Venturini, K Karlsson, M Münster, Energy Policy 133, 110900

How to maximise the value of residual biomass resources: The case of straw in Denmark

G Venturini, A Pizarro-Alonso, M Münster, Applied Energy 250, 369-388

Balmorel open source energy system model

Wiese, F., Bramstoft, R., Koduvere, H., Pizarro Alonso, A. R., Balyk, O., Kirkerud, J. G., Tveten, Å. G., 

Bolkesjø, T. F., Münster, M. & Ravn, H. V., 2018, Energy Strategy Reviews. 20, p. 26-34

42
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Thank you!  
Hvala vam!

Marie Münster, maem@dtu.dk

Twitter: @MarieMynster

LinkedIn: https://www.linkedin.com/in/marie-münster-b161293

Website: https://orbit.dtu.dk/en/persons/marie-münster

43

mailto:maem@dtu.dk
https://www.linkedin.com/in/marie-münster-b161293
https://orbit.dtu.dk/en/persons/marie-münster
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CCS vs CCU?

44

Fossil CO2

CCS

CCU efuel Fossil CO2

Positive
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Fossil CO2

CCS vs CCU?
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Fossil CO2

CCS

Neutral

Positive

Biogen CO2

Negative
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Extra slides

46
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Sector coupling definition

Combining the positive features of end-uses (flexible loads) and of storage devices, 

sector coupling consists of converting electricity into another form of energy, which can then 

be either: 

• stored for successive re-conversion to electricity, shift in time and in some cases also in 

space (when being transported as molecules); 

• consumed, with a beneficial substitution of other energy sources, temporarily (operational 

optimisation) or permanently (electrification); 

• transported as heat or molecules, when convenient, instead of through transmission or 

distribution power lines of electrons. 

48
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Heat generation per technology type

49
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DISTRICT 

HEATING

Alkaline
1GW

Methanol plant CCU

(heat integrated)

0.14 GW 0.07 GW 0.21 GW

𝐇𝟐

SOEC 1GW

TOTAL HEAT 
INTEGRATION: 

NO EXCESS

Methanol plant CCU

(heat integrated with SOEC)

𝐇𝟐

Alkaline
1GW

Ammonia plant

(heat integrated)

0.14 GW 0.03 GW 0.17 GW

𝐇𝟐

DISTRICT 

HEATING

SOEC 1GW Ammonia plant

(heat integrated with SOEC)

𝐇𝟐

TOTAL HEAT 
INTEGRATION: 

NO EXCESS

PtX to DH
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Extras
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